2024年度(令和6年度)大学院工学研究科 (博士前期課程)担 当 教 員 一 覧

国立大学法人 名古屋工業大学

目 次

大学院工学研究科(博士前期課程)担当教員一覧

生命・応用化学系プログラ	ム	 •	•	•	•	•	•	•	•	•	•	1
物理工学系プログラム・・	•	 •	•	•	-	•	•	•	•	•	•	4
電気・機械工学系プログラ	ム・	 •	•	•	-	•	•	•	•	•	•	6
情報工学系プログラム・・	•	 •	•		-							9
社会工学系プログラム・・		 •	•		-			•				12
丁学恵攻・・・・・・												14

2023年5月1現在

主要研究テーマ等については、当該教員に照会してください。

プログラム	職名	∸前期課程)担当 氏名	現在の主要研究テーマ	研究分野
	教授	青木 純	1 導電性高分子ナノ薄膜の作製と有機電子デバイスへの応用	
			2 共役系高分子超薄膜を用いた電界発光素子の作製	
			3 有機薄膜太陽電池による水素エネルギー変換	
	教授	伊藤 宏	1 エネルギー代謝と酸化ストレスに関する研究	
			2 運動や加齢による循環動態の変化に関する研究	
	教授	岩田 修一	1 レオロジー特性を活用した新しいプロセスの開発	
			2 動的表面張力の測定技術開発	
	教授	大北 雅一	3 流動複屈折を用いたレオロジー特性の解明とその応用 1 有機π電子系を組み込んだ超構造の形成と特性解明	
	教技	人儿 雅一	1 有機が電子系を組み込んに超構造の形成と特性解明 2 分子ジッパーの自己組織化を基盤とした超分子材料開発	
	教授	小澤 智宏	1 高選択型生体内小分子センサーの開発	
	7/1/	774 日/公	2 特異な場を持つ金属錯体系の構築とその生物無機化学的評価	
	教授	加藤 禎人	1 攪拌槽の開発と性能評価	
			2 撹拌所要動力推算方法の開発とその応用	
	教授	川崎 晋司	1 フラーレンやカーボンナノチューブなどのナノ炭素材料の機能化、構造物性	
	教授	神取 秀樹	1 光受容蛋白質におけるエネルギー変換・情報変換の機構解明	
	教授	北川 慎也	1 液体クロマトグラフィーと電気泳動の高性能化とその関連技術に関する研究	
			2 分離分析-質量分析手法の高性能化に関する研究 3 液体クロマトグラフィー・電気泳動・質量分析による合成高分子の分析	
	教授	柴田 哲男	3 液体グロマトグラフィー・電気が動・負重が加による百成高が子のが加 1 有機フッ素化合物の触媒的不斉合成	
	7人1人	未四 百万	2 がんやエイズなどのフッ素医薬品の設計と合成	
			3 含フッ素フタロシアニンの合成と太陽電池や抗癌剤への展開	
	教授	高田 主岳	1 機能性デバイスの開発	
			2 電気化学センサーの開発	
			3 酸化還元反応を利用したエネルギー変換素子の開発	
	教授	出羽 毅久	1 バイオハイブリッド化による光合成タンパク質の機能拡張	
			2 非天然型の光合成膜タンパク質複合体の構築	
	教授	中村 修一	3 核酸医療のための非ウイルス系ナノ粒子の開発 1 新規不斉触媒の開発とその応用	
	我按	中的 嗲一	1 利児で月間珠の開発とその心用 2 医薬品合成をめざす不斉合成手法開発	
			3 環境に優しい不斉合成手法の開発	
	教授	山村 初雄	1 糖, アミノ酸, ペプチドを基盤とした機能性分子の有機化学的構築	
生命・応用	准教授	石井 陽祐	1 電気化学反応におよぼす温度-圧力効果の解明	生命・物質
化学系			2 ナノ空間を活用した新しい蓄電池電極および電極触媒の開発	化学
12.77	准教授	猪股 智彦	1 表面修飾によるエネルギー変換素子・センサー素子の開発	
	*# # +亞	사 mg 구 구	2 有機一無機ナノハイブリッド材料による機能性デバイスの開発1 新奇な分子デザインに基づく有機半導体の開発	
	准教授	小野 克彦	1 利司なガナナッインに基づく有機十等体の開発 2 超分子ナノチューブの形成と水の機能発現に関する研究	
			3 太陽電池色素を目指した新規ドナー-π-アクセプタ系の合成研究	
	准教授	片山 耕大	1 色覚視物質の構造解析を基盤とした色認識機構、色覚情報伝達機構研究	
			2 赤外分光法によるGタンパク質共役型受容体のリガンド認識、情報伝達機構研究	
			3 動物ロドプシンを基軸とした新規オプトジェネティクスツール開発研究	
	准教授	住井 裕司	1 医薬品開発を志向した天然物のフッ素誘導体の設計と合成	
			2 有機フッ素化合物の分解と再利用	
	₩₩₩ ₩₩	園山 範之	3 不凍作用をもつ低分子有機化合物の開発	
	准教授	图山 毗人	1 リチウム電池界面反応の研究 2 新規リチウム電池正極材料の探索	
			3 無機PL・ELデバイス用新規蛍光体の開発	
	准教授	南雲 亮	1 分子シミュレーションを利用した水透過膜の選択的輸送メカニズム解析	
			2 二酸化炭素の高効率回収を実現する分離材料の理論設計	
			3 刺激応答性マテリアルの溶媒抽出プロセスへの応用	
	准教授	花井 淑晃	1 筋・骨の成長調節に関わる細胞シグナルの解明	
	\\\ +\\L\\\\\		2 骨格筋の有酸素作業能向上の分子機構の解明	
	准教授	平下 恒久	1 環境調和型有機反応の開発	
	准教授	廣田 雄一朗	2 有機金属化合物を用いた有機合成反応の開発1 イオン液体と無機材料の融合を目指した分離膜の開発	
	作为汉	澳山 雌 奶	2 ミクロポーラス材料を用いた分離膜、触媒の開発	
	准教授	古谷 祐詞	1 時間分解赤外分光法によるタンパク質の分子機構研究	
			2 金薄膜表面へのタンパク質固定化と表面増強赤外分光計測	
			3 全反射赤外分光法によるタンパク質ーリガンド相互作用解析	
	准教授	水野 稔久	1 リポペプチドベースの機能分子開発	
		<u></u>	2 生体高分子を利用した生理活性材料の開発	
	准教授	宮川 淳	1 生理活性糖鎖の合成とその生物学的機能の解明	
			2 糖鎖認識タンパク質の吸着除去材料の開発 3 糖鎖高分子の合成とその応用	
	准教授	柳生 剛義	3	
	/正大]又	1217 工 門17支	2 新規有機金属錯体の合成と触媒反応への応用	
	ı .		- 471/20-13 次 平 /型を[TTマイロ / 2/ - 1/2/入/人 / U	

		前期課程)担当		カカカ 八 田マ
プログラム	職名	氏名 安井 孝志	現在の主要研究テーマ 1 オキソ酸の選択的定量を目的とした呈色試薬の開発	研究分野
	准教授	女井 孝志	1 オキソ酸の選択的定量を目的とした主色試楽の開発 2 アゾ色素銅錯体による環状アミンの選択的酸化	
			3 色素担持固相の酸化還元による陰イオンの吸脱着制御	
	准教授	山本 靖	1 界面科学的手法による麻酔発現機構の解明	
	- 1 de	A	2 機能性有機薄膜を用いた環境センサーの開発	生命・物質
	助教	飯國 良規	1 マイクロフルイディクスおよび局所構造を利用するナノ・マイクロ分析法の開発	化学
	□+ <i>±/</i> -	いたまた エトロキ	2 磁気科学に基づく新規分離・分析法の開発	,,,,
	助教	近藤 政晴	│ 1 光合成関連タンパク質を用いた光エネルギー-物質変換デバイスの作成- │ 2 遺伝子工学的な手法で光捕集機能拡張される光合成生物の創製	
	助教	古川 陽輝	2 - 遺伝子エ子的な子法で元冊来機能拡張される元百成王初の創製 1 - 撹拌槽内の混合現象の解明	
	助我	ᆸᄱᄬ	1 現代情内の混合状象の解析 2 撹拌槽内内装物を利用した混合装置の開発	
			3 インライン型撹拌装置の開発	
	教授	稲井 嘉人	1 新規な人工分子マシーンの設計、合成、構造および機能化	
			2 らせん分子を基盤とする機能性ナノ材料の開発	
			3 生体関連高分子の構造と特性	
	教授	猪股 克弘	1 刺激応答性ポリペプチドを用いたミセル・ゲルの構造・物性特性	
			2 形状記憶能を有する高分子材料の調製	
	和一一	승규 까미	3 刺激応答性高分子の会合挙動	
	教授	高須 昭則	│ 1 環境適合型ポリエステル合成 │ 2 バイオマスを活用した新規生分解材料の設計	
			2 パイオマスを活用した制規生が解析料の設置 3 遺伝子組み換え大腸菌を活用した新規生体材料の精密設計	
	教授	築地 真也	3 遺伝子風が挟た八勝国を沿州とた新然主体が行め行出設計 1 細胞を見る化学の開拓 1 細胞を見る化学の開拓	
	ZV1X	** **	2 細胞を操る化学の開拓	
			3 細胞を作る化学の開拓	
	教授	永田 謙二	1 天然高分子ブレンドフィルムの創製と機能化	
			2 植物由来プラスチックとバイオファイバーとの複合化	
			3 熱伝導性・導電性ナノコンポジットの創製と物性評価	
	教授	樋口 真弘	1 ナノ微粒子集合体の微細構造制御による機能発現	
			2 認識多様性を有する新規センシングシステムの構築	
4 A 4 E	¼+₩+型	石井 大佑	│ 3 機能性分子集合体の配列・配向制御による機能発現 │ 1 プラズマ重合薄膜の新規物性と構造解析	
生命·応用 化学系	准教授		1 フラスマ皇台海膜の制成物性と構造解析 2 微細構造流路の構築とデバイス応用	
10子术			3 生物模倣材料開発のための物性解析と材料設計	
	准教授	岡本 茂	1 ブロック共重合体と金属,無機・微粒子の複合化によるメタマテリアルの創製	
		1.1 22	2 ブロック共重合体を用いたフォトニック結晶の創成	
			3 高分子階層構造の高次構造制御と構造解析	
	准教授	迫 克也	1 新規なドナー・アクセプター多元系を利用した有機デバイスの創製	ソフト
			2 有機πー電子系を用いた新規な集積型超構造体の開発と機能化の研究	マテリアル
	\# \ \L\\	15 10 TO 1	3 ジャイアント分子を用いた機能性分子エレクトロニクスの開発	
	准教授	塩塚 理仁	1 光機能性超分子金属錯体の創造とデバイス開発	
			2 環境応答型超分子による化学センサー開発研究 3 ナノ粒子の光機能化に関する探索研究	
	准教授	杉本 英樹	3 アン松子の光機能はに関する採集が充	
	在扒区	77年 天国	2 透明有機一無機ナノハイブリッド材料の開発	
			3 機能性微粒子材料の開発	
	准教授	高木 幸治	1 特殊構造をとる芳香族高分子、中分子の合成	
			2 電子光熱を操る有機デバイス材料の合成と性能評価	
			3 有機触媒による環境低負荷な高分子合成	
	准教授	信川 省吾	1 添加剤を用いた高性能透明高分子材料の開発	
			2 分子ダイナミクスに基づく高分子材料の高強度化	
	准教授	松岡 真一	│ 3 透明高分子材料の破壊靭性に関する研究 │ 1 有機分子触媒を用いたビニルモノマーの反応開発と高分子合成	
	准狄汉		1 有機カチ風媒を用いたビールモスマーの反応開発と同カチョ版 2 新構造シクロオレフィンポリマーの合成と材料開発	
			2 新福道フラロオレジャラペーの日成と初春開発 3 ルイス酸・塩基を組み合わせた触媒系による重合反応	
	准教授	山本 勝宏	1 小角X線散乱法による高分子階層構造形成のその場観察	
			2 高分子超薄膜の規則構造解析に関する研究	
			3 磁気共鳴法による極小空間における高分子の動的挙動に関する研究	
	准教授	吉里 秀雄	1 脳機能と遺伝子発現調節	
			2 タンパク質リン酸化と情報伝達	
	\# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+-1. +-25	3 運動と脳	
	准教授	吉水 広明	1 高分子膜の透過・分離機能 2 結果及び液晶性高分子材料の高次構造と物性	
			│ 2 結晶及び液晶性高分子材料の高次構造と物性 │ 3 NMR法による高分子の固体構造解析	
	<u> </u>		」 」 NIVIII、AICの公司ルナツ四个特色所引	ı

大学院工学研究科(博士前期課程)担当教員一覧								
プログラム	職名	氏名	現在の主要研究テーマ	研究分野				
	教授	安達 信泰	1 磁性ガーネット薄膜による磁界イメージング素子の開発					
			2 マイクロマシンデバイスのための希土類強力薄膜磁石開発					
			3 酸化物多孔体による高周波電磁界吸収体の開発					
	教授	井田 隆	1 粉末X線回折法による結晶構造および微細構造の評価					
			2 シンクロトロン軌道放射光を用いた粉末回折					
	教授	岩本 雄二	1 有機・無機変換プロセスを利用した新規反応触媒の設計と合成					
			2 ポリマープレカーサー法による新規酸窒化物系蛍光体の創製					
			3 人工光合成プロセスへの応用を志向した水素分離膜,水素貯蔵材料の創製					
	教授	柿本 健一	1 無鉛圧電セラミックスの開発と医療・エネルギー応用					
		14-1 12	2 強誘電体ドメインダイナミクスの解明					
			3 有機·無機機能性ハイブリッド材料の研究開発					
	教授	籠宮 功	1 イオン-電子混合導電体の構造物性とそのエネルギー関連材料への応用					
	1,7,7	11811 77	2 遷移金属酸化物への輸送イオンのインターカレーションとその新規物性					
	教授	申 ウソク	1 導電性セラミックス材料の合成及び物性評価					
	77.7	1, 777	2 導電性材料を用いたデバイス創製					
	教授	中山 将伸	1 リチウムイオン電池の電気化学特性研究					
	10,10	ተጠ ነፃነተ	2 実験と計算手法を統合したセラミックス材料の機能解析研究					
			3 第一原理計算による固体酸化物型燃料電池の材料機能解析					
	教授	橋本 忍	1 産業廃棄物および未利用資源の有効利用法の開発					
	40.100	個本 心	2 高温複合材料の作製とその評価					
			3 新規高機能セラミックス粉体の作製とその評価					
	教授 教授	羽田 政明	3 利兄高機能センミックスが体の作業とての計画 1 排出ガス浄化触媒に関する研究					
	40.1文	初田 以明	2 環境浄化触媒における貴金属の省使用化技術の開発					
	教授	早川 知克	2 環境浄化融媒における真面属の有使用化技術の開発 1 LED励起用及び太陽光波長変換用高効率蛍光体の開発					
	40.1文	千川 邓兄	1 ここの加起用及び太陽光波長変換用局効率虽光体の開発 2 非線形光学ガラスの開発					
生命·応用			2 非縁形元子ガラスの開発 3 金属微粒子の合成とプラズモニクスへの展開	環境				
化学系	#4+亚	口白 チ斑		セラミックス				
	教授	日向 秀樹	1 マイクロ波加熱や燃焼合成を利用した高機能粉末の合成 2 多機能性を有する非酸化物エンジニアリングセラミックスの開発					
	#4+亚	50 4 0						
	教授	福田 功一郎	1 生体骨を規範とする高イオン伝導性アパタイト配向多結晶体の開発 2 人間の目の三刺激値を想定した高効率LED用蛍光体の開発					
	44-4亚		3 次世代充電池を目指した多価陽イオン高速伝導体の基礎化学					
	教授	藤 正督	1 無焼成セラミクスの作製とその応用					
			2 粒子分散系複合材料の作製とその応用					
	#/L 1777	→ + + +	3 ナノ中空粒子の合成とその応用					
	教授	不動寺 浩	1 コロイド結晶を用いた高機能材料開発					
	#/L 1777	** m	2 ソフトリソグラフィ技術によるマイクロパターニング					
	教授	前田 浩孝	1 水質浄化材料の開発					
			2 機能性材料の表面設計					
	\\(\psi \\ \psi \\ \ps	.b. T. T.	3 無機一有機複合化による熱制御に関する研究					
	准教授	浅香 透	1 電気・磁気的に特異な物性を示す無機化合物の構造物性					
			2 機能性無機化合物の透過型電子顕微鏡による局所構造解析					
			3 電子相関を利用した機能性酸化物の物質開発					
	▮准教授	小幡 亜希子	1 セラミックスをベースとした硬組織代替材料の開発					
			2 バイオマテリアルに対する細胞応答性の解析					
			3 無機・有機ハイブリッドの合成及び物性評価					
	准教授	白井 孝	1 マイクロ波化学プロセスによる機能性粒子の創製とその応用					
			2 界面制御技術による新規エネルギー材料の創製					
			3 無機粒子の表面活性処理による気体状有害物質の分解除去					
	准教授	大幸 裕介	1 イオンを飛ばす高電場イオニクス					
			2 イオンを活かす反応場イオニクス					
			3 イオンを揺らす励振場イオニクス					

		前期課程)担当	数員一覧	T T T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
プログラム	職名	氏名 数田	現在の主要研究テーマ	研究分野
	教授	大原 繁男	1 アシンメトリ(非対称性)により発現する量子物性	
			2 希土類キラル磁性体の合成とその磁気特性の研究	
	4/15		3 dおよびf電子に起因する磁性体探査と物性研究	
	教授	呉 松竹	1 自動車部品・電子機器の機能性表面処理技術の新規開発および表面物性評価	
			2 次世代高安全性大容量LIB負極と正極の創製および電池特性評価	
			3 軽金属の表面高機能化処理による超硬質合金膜と超潤滑性膜の創製および特性評価	
	教授	佐藤 尚	1 組織3次元可視化法およびEBSD法を用いた金属材料の組織評価	
			2 摩擦摩耗によって形成するナノ構造組織の発現機構の究明	
			3 強度および潤滑特性に優れた自己潤滑複合材料の開発	
	教授	萩原 幸司	1 マルチスケール組織制御によるMg, Al, Ti基軽量・高強度構造材料開発	
			2 超高強度・高延性・高靭性を同時に具備する新規鉄鋼材料開発	
			3 1400℃以上での安定使用を可能とする,次世代超高温構造材料開発	
	教授	濱中 泰	1 環境調和型半導体ナノ粒子の作製と光物性	
	7/1/2	/	2 金属-半導体複合ナノ粒子の作製と新機能の探索	
			2 並属・千等体後ログク位于の下級と利威能の採集 3 半導体ナノ粒子の近赤外プラズモニクス	
	±1-1-∞	++ +7		
	教授	林 好一	1 量子ビームを用いた材料機能性サイトのイメージング	
			2 軽金属構造材料のナノ析出物評価に関する研究	
			3 多層膜の高次構造解析技術の開発	
	教授	日原 岳彦	1 ナノ粒子の気相合成プロセスに関する研究	
			2 複合粒子によるナノコンポジット磁石の開発	
			3 燃料電池白金代替触媒の探索と機能評価	
	教授	壬生 攻	1 新しい人工合金・化合物の探索	++ 4/1 +総 台内
			2 薄膜・人工格子・ナノ構造体を利用した物性研究	材料機能
			3 スピンエレクトロニクスに向けての人エナノ物質の開発	
	教授	渡邉 義見	1 遠心力法による傾斜機能材料の製造とその材料評価	
	37.12		2 ヘテロ凝固機構により高造形性・高強度を実現する積層造形用金属粉末の開発	
			3 アルミ合金鋳物用革新的組織微細化剤の創製と生産プロセス開発	
	准教授	井手 直樹	1 Fe ₂ VAI系熱電変換材料の開発	
	在401文	开于 追倒		
			2 内部摩擦の振幅依存性を利用した材料の力学特性評価	
	V4 +/L 157	m++ +-	3 格子欠陥の特性評価と物性制御	
	准教授	奥村 圭二	1 高清浄金属製造プロセスの高効率化に関する研究	
			2 溶媒金属への有価金属の分離回収に関する研究	
			3 超音波印加による異相界面制御に関する研究	
物理工学系	准教授	栗田 典明	1 金属酸化膜のイオン物性および利用に関する研究	
			2 プロトン伝導性セラミックスの探索と応用研究	
	准教授	田中 雅章	1 微小強磁性体を用いたスピントロニクスデバイスの開発	
			2 スピン流の生成・検出に関する研究	
			3 強磁性体薄膜上の新奇磁区構造の研究	
	准教授	星 芳直	1 金属材料の腐食電気化学反応モデルの構築と機能性創出	
			2 高耐食材料開発に向けた金属溶解のリアルタイムイメージング	
			3 電気化学インピーダンス法による環境・エネルギー材料の腐食モニタリング	
	准教授	宮崎 秀俊	1 強相関電子系熱電材料の探索と熱電特性評価	
	在孙汉		2 機能性電子材料の探索と発現メカニズムの解明	
			2 機能性電子物料の採集と発現メガニスムの推明 3 分光学的手法および理論計算を用いた機能性材料の基礎的研究	
	教授	在田 謙一郎	3 万元子的子法のよび注酬計算を用いた機能は例れて基礎的明先 1 原子核構造論,有限量子多体系	+
	叙按	1土田 禄一郎		
	±/L1=0	314 CD 034 /+	2 半古典論,周期軌道理論,量子カオス	
	教授	池田 勝佳	1 エネルギー変換に関する基礎的研究	
			2 原子・分子レベルでの界面構造制御に基づく機能設計	
	44 1-	l l	3 電極表面の分光解析に関する研究	
	教授	岩田 真	1 酸化物強誘電体単結晶育成と物性評価	
			2 走査プローブ顕微鏡による強誘電体微小ドメインの研究	
			3 強誘電体材料特性の解析方法の研究	
	教授	尾形 修司	1 スパコンを活用する大規模な分子と電子のシミュレーション	
			2 マルチスケールなハイブリッド量子ー古典シミュレーション	
			3 諸材料内での様々な物理化学過程に関するシミュレーション	
	教授	高橋 聡	1 光物性の理論	応用物理
		3	2 強相関電子系	
			3 光誘起相転移の理論	
	教授	渡邊 威	1 乱流輸送の大規模直接数値シミュレーション	
	大1又	//义迈 // 以	2 乱流中の小さな物体(固体粒子,高分子鎖)の挙動	
	准	T关 40 T4n+	3 2次元乱流系における秩序渦集団の統計理論	
	准教授	礒部 雅晴	1 非平衡系の計算統計物理(粉体、熱現象、2次元融解)	
1			2 剛体球系大規模分子シミュレーションの方法論開発	
			3 構造ガラス系における遅い緩和と動的協働促進理論	
	准教授	小野 晋吾	1 紫外発光・検出素子に関する研究	
	•			Ī
			2 レーザープロセシングに関する研究	

	究科(博士)	前期課程)担当4		
プログラム	職名	氏名	現在の主要研究テーマ	研究分野
	准教授	木村 高志	1 放電プラズマの計測とモデリング	
			2 プラズマ材料プロセスに関する基礎研究	
	准教授	小林 亮	┃ 1 固体材料界面の原子スケール・シミュレーション	
			2 機械学習手法を用いた新規原子間ポテンシャル開発	
			3 分子シミュレーションの新規手法開発	
	准教授	齋藤 泉	┃ 1 乱流中における微小粒子群と流れ場の相互作用に関する研究	
			2 雲内における雨粒の形成に関する研究	
			3 回転・密度成層の影響下にある流体からのパターン形成に関する研究	
	准教授	田村 友幸	1 電子状態計算による材料中の局所構造解析	
			2 マテリアルズインフォマティクスの手法開発と材料探索への応用	
	准教授	丹澤 和寿	1 高分子の結晶成長機構	
			2 高分子の高次構造形成	
			3 中間相を経由する高分子の結晶化挙動	
物理工学系	准教授	内藤 隆	┃ 1 うず流れの研究	応用物理
かなエテバ	准教授	本林 健太	1 イオン液体中の電気化学に関する基礎研究	70711707 <u>±</u>
			2 濃厚電解質溶液の界面構造解析	
			3 固液界面の分光分析	
	准教授	米谷 昭彦	┃ 1 システムのモデリングと制御系設計	
			2 フルデジタルアンプ	
			3 電子回路における制御応用	
	助教	瀧川 佳紀	1 液晶の相転移に関する基礎的研究	
			2 2周波液晶のレオロジー的性質の制御	
			3 強誘電性を示す液晶の誘電特性	
	助教	本田 光裕	1 表面・界面での光励起キャリアダイナミクスに基づいた高効率光触媒の開発	
			2 半導体ナノ材料のレーザー合成とセンサー応用	
			3 低エネルギー・低環境負荷なナノ複合材料の合成と環境浄化への応用	
	助教	宮川 鈴衣奈	1 超短パルスレーザープロセッシング	
			2 ワイドギャップ半導体材料の結晶成長	

大学院工学研 プログラム	允件(博□ ■ 職名	上前期課程)担当教 ┃ 氏名	現一見 現在の主要研究テーマ	研究分野
74774	教授	市村 正也	1 化合物半導体薄膜の電気・光化学堆積と太陽電池の作製	ᄢスᄭᄞ
	10/10	11111 1111	2 新しい透明半導体	
	教授	岩崎 誠	1 メカトロニクス制御系の自律化・知能化設計	
	4X1X		2 工作機械の高速・高精度位置決め制御系設計	
			2 エF版版の局域・局積度位置がの前脚系設計 3 進化アルゴリズムの運動制御系設計への応用	
	₩1四	工 油丰		
	教授	王 建青	1 医用・ヘルスケア生体通信に関する研究	
			2 人体通信に関する研究	
	#/L 1777	+n# T.H	3 生体医療EMCに関する研究	
	教授	加藤 正史	1 省エネルギー半導体材料の評価手法開発	
			2 省エネルギー半導体デバイス・プロセスの開発	
	±4-1±0	****	3 半導体を用いたエネルギー変換デバイスの開発	
	教授	菅野 敦史	1 高速光ファイバー通信	
			2 車載ネットワーク	
			3 有無線融合ネットワーク	
	教授	小坂 卓	1 ハイブリッド車や電気自動車用の駆動用小型高効率モータ	
			2 レアアース材を用いない小型高効率モータ	
			3 モータの低振動化・低損音化設計ならびに制御技術	
	教授	榊原 久二男	1 超高周波アレーアンテナ・レンズアンテナ	
			2 指向性ビーム走査技術	
			3 平面アンテナと高周波回路との一体化技術	
	教授	ニラウラ・マダン	1 MOVPE法によるCdTe系ⅡーⅥ族半導体の成長	
			2 大面積X線,γ線画像検出デバイスの開発	
	教授	平田 晃正	1 生体電磁環境	
			2 電磁界の医療応用	
			3 複合物理解析手法	
	教授	三好 実人	1 窒化物半導体結晶の気相成長・結晶評価・デバイス応用	
			2 窒化物半導体ヘテロ構造を高速・高出力トランジスタ	
電気∙機械			3 窒化物半導体の光無線給電システムへの応用	
电风 ′ ′ ′ ′ ′ ′ ′ ′ / ′ / ′ / ′ / ′ / ′ /	教授	森田 良文	1 リハビリテーション支援ロボット/デバイスに関する研究	電気電子
工子术			2 認知機能評価・トレーニングに関する研究	
			3 産業用ロボットの教示に関する研究	
	教授	安井 晋示	1 電気設備設計の最適化	
			2 電力・需要家設備の雷保護・リスクマネジメント	
			3 電力設備のスマート保安・遠隔異常診断	
	准教授	青木 睦	1 電力システムの保護および制御システムに関する研究	
			2 配電システムの電力品質に関する研究	
			3 次世代エネルギー・デマンドサイドマネジメント	
	准教授	安部 功二	1 化合物半導体の伝導制御に関する研究	
			2 イオン注入欠陥のアニール挙動に関する研究	
			3 化合物半導体の結晶成長と物性評価	
	准教授	安在 大祐	1 生体情報伝送における通信方式に関する研究	
			2 生体通信の適応信号処理に関する研究	
			3 無線通信端末の位置推定に関する研究	
	准教授	岡本 英二	1 符号化変調方式	
			2 移動無線通信	
	准教授	岸 直希	1 有機半導体、炭素材料、ナノ材料を用いたフレキシブル室内光用太陽電池素子の開発	
	1 12 17 17	71 = 11	2 有機半導体、炭素材料、ナノ材料を用いたフレキシブル熱電変換デバイスの開発	
			3 カーボンナノチューブ、グラフェンの合成と透明導電膜への応用	
	准教授	北川 亘	1 電磁機器の電磁界解析による特性評価	
	作孙汉	16/11 =	2 電磁機器の最適化	
			3 用途指向型アクチュエータの設計と開発	
	┃ ┃准教授	久保 俊晴	3 用速指向空ナクテュエータの設計と開発 1 窒化物半導体の電子デバイス応用に関する研究	
	性教技	八木 夜明	1 至11初十等体の電子アバイス応用に関する研究 2 半導体/絶縁膜の界面物性に関する研究	
	米 茅垣	小土 処エフ	3 ナノカーボン材料の合成とデバイス応用に関する研究	
	│ 准教授 │	小寺 紗千子	1 電波の生体安全性評価	
			2 生体温熱生理応答のモデル化	
	ļ	<u> </u>	3 高周波ば〈露装置に関する研究	<u> </u>

		-前期課程)担当勢		77 do // 007
プログラム	職名	<u> </u>	現在の主要研究テーマ	研究分野
	准教授	佐藤 徳孝	1 情報収集型レスキューロボットのユーザインタフェース	
			2 情報収集型レスキューロボットの遠隔操作支援制御	
	光 茶 	88 <i>17</i> \$ 1	3 バーチャルリアリティ・オーグメンテッドリアリティ	
	准教授	関 健太	1 精密位置決め機構・制御設計	
			2 地震シミュレータの運動制御	
	准教授	平山 裕	3 圧電アクチュエータの高精度制御 1 無約電力に送用ストラー・京田波同路の開発	
	准叙技	十四格	1 無線電力伝送用アンテナ・高周波回路の開発 2 高周波測定技術の開発	
			2 同局収測に投制の用光 3 電波伝搬解析	
	准教授	前田 佳弘	3 竜灰伝統件が 1 自動制御設計	
	准叙技	別田 注加	日	
			3 摩擦モデリングと補償	電気電子
	准教授	松盛 裕明	1 EV/PHEV用充電器の開発	
	作为汉	14 14 14 14 14 14 14 14 14 14 14 14 14 1	2 受動部品の小型・軽量・低損失化に関する研究	
			3 自動車駆動用ドライブシステムの開発	
	准教授	若土 弘樹	1 メタマテリアル・メタサーフェス・周期構造	
	123712	- <u>u</u>	2 電磁波応用デバイス	
	准教授	分島 彰男	1 窒化物半導体トランジスタの研究	
	123712	73 110 47 73	2 窒化物半導体デバイスプロセスと評価技術の研究	
	助教	加藤 慎也	1 シリコンおよびペロブスカイト太陽電池に関する研究	
	73.3%	77 17 D	2 ナノシリコンを用いたリチウムイオン電池負極材料の研究	
			3 ポーラスナノシリコンを前駆体としたバルクシリコン熱電発電素子の開発	
	教授	石野 洋二郎	1 三次元医用CT法によるアンモニア乱流火炎・超音速流動の先進多次元計測	
		121 71 21	2 酸素燃焼廃棄処理中の超高温CFRPの微細表面温度の画像計測	
	教授		3 新規エンジン, 遠隔熱触覚体験ロボットアーム・装着装置の開発・試作	
		井門 康司	1 機能性流体/機能性材料の力学および特性の解明	
			2 機能性流体/機能性材料などを利用した応用開発	
			3 電磁力関連のダイナミクス	
	教授	糸魚川 文広	1 切削加工におけるトライボロジー	
		71777777	2 大気圧プラズマを利用した表面微細構造創製	
			3 潤滑薄膜の状態・組成変化のIn-situ計測	
	教授	坂口 正道	1 バーチャルリアリティ(VR), ヒューマンインタフェース, メカトロニクスに関する研究	
電気·機械			2 スポーツやものづくり技能等の体験・訓練・支援に関する研究	
工学系			3 リハビリテーション・福祉・医療支援に関する研究	
	教授	佐野 明人	1 ヒトに近い2足歩行ロボットの開発	
			2 アスリート的な2足走行ロボットの開発	
			3 ヒトの触知覚現象の解明と独創的触覚デバイスの開発	
	教授	田中 由浩	1 触覚デバイスの開発	
			2 触知覚メカニズムの解明	
			3 触感デザイン	
	教授	玉野 真司	1 複雑流体の計測技術に関する研究	
			2 複雑流体の数値シミュレーションに関する研究	
			3 複雑流体の医工学応用・省エネ技術に関する研究	
	教授	中村 匡徳	1 生理流体力学(血液流, 呼吸器内気流, 赤血球流)	機械工学
			2 バイオマイクロフルイディクス(がんの力学的予防と治療, 細胞分別)	
			3 バイオミメティクス(鳥類の呼吸・循環器に学ぶ高性能物質輸送・交換機構の創製)	
	教授	西田 政弘	1 粉粒体の衝撃特性の解明	
		_	2 構造物の衝撃挙動	
	教授	古谷 正広	1 超音速流動と着火まえ反応との干渉	
			2 火花放電火炎核形成過程観察	
			3 高熱効率・低窒素酸化物濃度燃焼の実現	
	教授	森西 洋平	1 流体運動の数値解析手法に関する研究	
			2 乱流の非定常数値計算とモデリングに関する研究	
			3 乱流現象の実験的研究	
	教授	山田 学	1 機械システム(飛行, 車両型移動ロボット)の自動制御とその応用に関する研究	
			2 ロバスト・最適制御・適応制御とその応用に関する研究	
	准教授	飯田 雄章	1 乱流現象に生じる非線形作用の解明とモデル化	
	,,, ±,, :=	/ 	2 浮力,コリオリカがせん断乱流に及ぼす影響の解明	
	准教授	伊藤 智啓	1 応力波伝播解析	
			2 超音波非破壊検査	
	准教授	岩本 悠宏	1 磁性流体・磁気粘性流体のダイナミクスとその応用研究	
			2 磁性エラストマーのダイナミクスとその応用研究	
	, ₄₄ 1-	→	3 電磁機能性流体・材料の数値解析	
	准教授	氏原 嘉洋	1 生体の力学適応機構とその破綻による病態発症機序の解明	
			2 生体の構造と機能の階層的理解(分子・細胞・組織・臓器・個体) 3 生体の構造と機能の時間的理解(発生・発達・老化・進化)	

		上前期課程)担当教		TT 00 // WZ
プログラム	職名	氏名	現在の主要研究テーマ	研究分野
	准教授	牛島 達夫	1 係留した物体の揺動を利用した新型乱流発生装置の開発	
			2 フラクタル空間構造物の後流乱流の計測	
	VL 40 155	<u> </u>	3 壁に設置した垂直軸風車周りの流れ解析	
	准教授	齋木 悠	1 反応性熱流動場におけるラジカル表面反応現象の解明	
			2 カーボンニュートラル社会のための触媒反応研究	
	.,, .,, .,	1. — 15-5	3 火炎・プラズマによる表面機能化技術の開発	
	准教授	杉田 修啓	1 生体軟組織の破壊予測・破壊抑制法の構築	
	.,, .,, .,	// +h	2 細胞と組織間の力伝達による生体機能の解明	
	准教授	早川 伸哉	1 放電加工における材料除去機構の解明	
			2 CFRPの放電加工	
	.,, .,,		3 金属と樹脂のレーザ接合	
	准教授	保浦 知也	1 複雑乱流場における熱・物質輸送機構の解明と予測	
* - - - - - - - - - -			2 微気象観測の精密計測に関する研究	
電気・機械	VL 40 155	34111 334	3 流体の速度場と温度場の可視化計測法の開発	機械工学
工学系	准教授	前川 覚	1 トライボロジー 1 トライボロジー	
			2 振動・騒音制御のための機械設計技術	
	\#_+/_1\to	44 WZ = 15 **	3 複合材料の機械加工	
	准教授	牧野 武彦	1 マイクロメゾスケール塑性変形の解析	
			2 マイクロメゾ成形のトライボロジー	
	\# #L1₩	1 □ 1□ 1⇔ □□	3 マイクロメゾ成形のトライボロジー	
	准教授	和坂 俊昭	1 運動イメージ形成と感覚機能	
			2 生体反応と脳活動の関係	
	D+ #/-	.1 +/2	3 運動制御と感覚情報系	
	助教	山田 格	1 メゾスコピック流体数値解析に関する研究	
	D+1 #/r	夕네 마파 누다	2 マイクロ流路内における相変化を伴う流動の実験的研究	
	助教	劉 暁旭	1 フェムト秒レーザによる精密加工	
			2 炭素系硬質被膜	
			3 トライボロジー	

大字院工字研 : プログラム	究科(博士 職名	:前期課程)担当教員· 氏名	一覧 ┃ 現在の主要研究テーマ	研究分野
7-77-	教授	伊藤 嘉浩	れたの工会研究が、マーロー	かいしい エバ
	3717	וויות אוויעו	2 インターネットにおけるQoS	
	教授	片山 喜章	1 分散アルゴリズムの開発・解析	
		7.1	2 ユビキタスコンピューティング	
	教授	齋藤 彰一	1 システムソフトウェア	
		744.00	2 コンピュータセキュリティ	
			3 ネットワークセキュリティ	
	教授	津邑 公暁	1 計算機アーキテクチャ	
			2 並列処理	
	教授	松尾 啓志	1 分散システムに関する研究	
			2 ネットワーク仮想化に関する研究	
	教授	和田山 正	1 符号理論・情報理論	
			2 信号処理のための機械学習のへの応用	
			3 通信工学	ネットワーク
	准教授	打矢 隆弘	1 サイバー社会を支える新しいソフトウェア基盤の開発	ホットワーク
			2 広域分散環境を基盤とした応用知能ソフトウェアシステムの開発	
			3 エージェントシステムの設計方法論・開発/運用環境の構築	
	准教授	川島 龍太	1 高性能ネットワークシステム	
			2 仮想化・クラウドコンピューティング	
			3 システムソフトウェア	
	准教授	布目 敏郎	1 有線・無線情報ネットワーク	
			2 QoE/QoS	
			3 クロスレイヤ設計ネットワーク	
	准教授	福嶋 慶繁	1 画像信号処理	
			2 並列画像処理	
	- 1 ±1	1 11 11 4-	3 三次元画像処理	
1±+0 = 24 =	助教	立岩 佑一郎	1 学習管理システム	
情報工学系	#410	\u00aa	2 ラーニングアナリティクス	
	教授	犬塚 信博	1 機械学習とデータマイニング	
			2 社会ネットワーク分析	
	教授	大囿 忠親	3 知能技術を応用したシステム分析 1 Web知能に関する研究	
	叙文	人国 心机	1 Web知能に関する研究	
			2 マルデエーフェントと人工知能に関する研究	
	教授	加藤 昇平	1 機械学習及び推論処理に関する研究	
	4X1X	Marke ST	2 知能・感性ロボティクスに関する研究	
			3 進化的計算・人工生命に関する研究	
	教授	櫻井 祐子	1 マルチエージェントシステム	
	.^	INVI TH I	2 人工知能	
			3 人とAIの協働のためのメカニズム設計	
	教授	白松 俊	1 自然言語処理とナレッジグラフを用いた合意形成の支援技術研究	
			2 シビックテックやオープンデータに関する研究	知能情報
			3 自己理解やメンタルケアを支援する対話エージェントの研究	
	教授	永井 正司	1 言語理論に関する研究	
			2 統語理論に関する研究	
			3 日本語・英語の文法構造に関する研究	
	教授	田中 剛平	1 ニューラルネットワーク	
			2 時系列情報処理	
			3 数理工学	
	准教授	大塚 孝信	1 ワイヤレスセンサネットワークシステムに関する研究	
			2 センサ情報を用いた環境情報予測に関する研究	
	.,, :	.	3 センサフュージョンおよびマルチモーダル学習に関する研究	
	准教授	烏山 昌幸	1 統計的機械学習	
			2 マテリアルズインフォマティクス	
			3 バイオインフォマティクス	

プログラム	職名	氏名	現在の主要研究テーマ	研究分野
	准教授	金 銀珠	1 言語の構造解析	
			2 言語の歴史的変化分析	
			3 言語解釈の歴史に関する研究	
	准教授	船瀬 新王	1 脳波を使用したインタフェースの構築	
	,,,,,	25-12 - 17 <u></u>	2 運動意思に関連した脳機能解析	
			3 生体信号によるヒトの定量化に関する研究	
	准教授	松井 俊浩	1 マルチエージェントシステム	
	/ETX JX	1471 1271	2 分散システム	
			3 協調問題解決・分散最適化	
	₩₩₩ ₩₩	ᅷᅓᆄᆉᄀ		知能情報
	准教授	武藤 敦子	1 生命・社会の複雑系シミュレーション	
			2 社会ネットワーク分析	
	VL +/L1∓	+	3 機械学習とデータマイニング	
	准教授	森山 甲一	1 強化学習による複数エージェント間の協調行動の獲得	
			2 人間の非合理的な側面と意思決定の関係のモデル化	
			3 強化学習の応用	
	准教授	吉川 りさ	1 言語習得理論に関する研究	
			2 第二言語読解に関する研究	
			3 語彙と心的辞書に関する研究	
	教授	小田 亮	1 霊長類の音声コミュニケーションとヒト言語の進化	
	27.72	, , ,	2 ヒトの認知と行動についての進化心理学的研究	
			3 自然科学と工学、人文社会学の関係について	
	教授	CULLEN BRIAN	1 英語教育	
	7人1又	COLLLIN BRIAIN	2 ポジティブ心理学	
	★4+1型			
	教授	佐藤 淳	1 コンピュータビジョン	
			2 複合現実感と映像メディア処理	
	40 Im	_ , #	3 ヒューマンコンピュータインターラクション	
	教授	玉木 徹	1 コンピュータビジョン	
			2 画像認識・画像処理	
			3 映像の理解と解析	
青報工学系	教授	徳田 恵一	1 音声言語処理	
月秋二十六			2 統計的機械学習に基づいた音声合成・歌声合成	
			3 音声対話システム	
	教授	本谷 秀堅	1 医用画像処理	
			2 動画像処理	
			3 統計形状モデリング	
	教授	李 晃伸	1 音声言語情報処理	
	17.17	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 音声認識・音声対話システム	
			3 対話型音声インターフェース	
	准教授	黒柳 奨	1 音響情報処理	
	作扒汉	杰 彻 美	7 目音 情報処理 2 聴覚系神経回路モデル	メディア情報
			2 応見ぶ仲科団的モアル 3 ニューラルネットワーク	
	准教授	悠藤 宇山		
	(性)(1)	後藤 富朗	1 デジタル画像処理に関する研究	
			2 信号処理に関する研究	
	\# \ \L\\\	±-, ++	3 非線形フィルタに関する研究	
	准教授	坂上 文彦	1 コンピュータビジョン	
			2 ライトフィールドを利用した画像処理	
			3 画像・パターン認識	
	准教授	酒向 慎司	1 手話の自動認識に関する研究	
			2 音楽情報科学	
	准教授	田口 亮	1 人とロボットのコミュニケーションに関する研究	
			2 ロボットによる言語獲得に関する研究	
			3 画像処理技術の産業応用に関する研究	
	准教授	田中 優子	1 認知バイアスが発生する心理メカニズム	
	VE JOIN		2 意思決定プロセスにおける認知とメディア環境との相互作用	
	准教授	南角 吉彦	2 息心疾にプロセスにおける認知とグライが環境との相互作用 1 音声情報処理	
	性狄拉	用用 口戶		
			2 画像情報処理	
	\4 \\L	151 14	3 統計的機械学習	
	准教授	橋本 佳	1 音声情報処理	
			2 統計的機械学習 3 音声合成·声質変換	

		前期課程)担当教員		エロッセン人用で
プログラム	職名		現在の主要研究テーマ	研究分野
	准教授	平野 智	1 アナログーディジタル信号処理に関する研究	
			2 ΔΣ変調器に関する研究 2 ΔΣ変調器に関する研究 2 ΔΣ変調器に関する研究	
	ソナキ ト型	内括 /井司	3 1ビットディジタル信号処理に関する研究	
	准教授	舟橋 健司	1 仮想物体操作のモデル化	
			2 バーチャルリアリティ	
	\4 +\L15	.1.4	3 ミクストリアリティ	
	准教授	山本 大介	1 Webサービス	, - · - · - · - · - · - · - · - · - · -
			2 地理情報システム	メディア情報
	.// 4// 15	144 — N 	3 E-Learning	
	准教授	横田 達也	1 テンソル分解	
			2 信号処理	
			3 機械学習	
	助教	クグレ・マウリシオ	1 デジタル信号処理	
			2 機械学習	
			3 組み込みシステム	
	教授	平澤 美可三	1 位相幾何学	
			2 曲面, 三次元多様体の幾何学	
			3 結び目理論	
	教授	松添 博	1 情報幾何学	
			2 アファイン微分幾何学	
			3 幾何学の応用	
	教授	山岸 正和	1 代数的整数論	
			2 整数論の暗号理論への応用	
情報工学系	教授	横越 梓	1 言語データの解析や情報処理に関する研究	
			2 言語理論と統語構造に関する研究	
			3 極小主義に基づく言語変化の研究	
	教授	吉田 江依子	1 極小主義理論に基づく位相の特性について	
	17.12		2 言語変化に対する統計的分析	
			3 言語の作用域等の問題についての論理学的分析	
	准教授	大橋 美佐	11 例外的リー群の幾何学	
	/E-70/JX		2 動標構による微分幾何学	
	准教授	小田部 秀介	11 代数幾何学	情報数理
	在扒区	1,m th 121	12 数論幾何学	
			2 数冊成刊子 1 3 基本群スキーム 1 1 1 1 1 1 1 1 1	
	准教授	佐伯 明洋	1 複素解析的幾何学	
	准叙汉		「後条所がり成回子 2 複素多様体上の解析学	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	ルナヤ 1型	⇔+ ≠=	3 複素解析的葉層構造	
	准教授	鈴木 政尋	1 非線形偏微分方程式論	
			2 半導体のモデル方程式の数学解析	
	,44,44,155	7 =	3 プラズマのモデル方程式の数学解析	
	准教授	千頭 昇	1 実解析学	
	.,, .,,	1 4 1 1 1 1 1 1 1	2 非線形偏微分方程式論	
	准教授	中島 規博	1 超平面配置の数学	
			2 組合せ論	
			3 微分作用素環の環論および加群論的性質	
	准教授	林 倫弘	1 フォンノイマン環	
			2 C*環	

		上前期課程)担当		ᅚ퓨ᄼᄾᄜᄛ
プログラム	職名 教授	<u>氏名</u> 石川 有香	現在の主要研究テーマ 1 言語テクストの客観的解析手法の開発	研究分野
	我饭	1月11月1日	- 言語アクストの各戦的解析于法の開発 2 言語習得を促進する環境要因の抽出	
			2 音品 目 付き に延り る環境安凶の抽出 3 コーパス語彙意味論の視点に基づく動的意味記述手法の構築	
	教授	石松 丈佳	1 環境の特質・資源を活用したデザインに関する研究	
	17.17		2 地域環境に根ざした造形・デザインに関する研究	
			3 デザイン及び造形芸術の普及に関する研究	
	教授	井戸田 秀樹	1 鉄骨構造物の耐震安全性評価	
			2 木造住宅の耐震設計と耐震補強	
			3 確率論的性能評価手法の開発	
	教授	兼田 敏之	1 都市再生プロジェクトの意思決定分析	
			2 エージェントベースド都市シミュレーション	
			3 都市計画・まちづくりに係わる問題解決研究	
	教授	加茂 紀和子		
			2 保育・教育と空間の関係に関する研究	
	#L 1777	· · · · · · · · · · · · · · · · · · ·	3 都市再生の建築的手法に関する研究	
	教授	河邊 伸二	1 リサイクル材料と再利用変換技術による建築材料の開発	
			2 建築電磁環境向上のための電波吸収体の開発と評価	
	教授	北川 改久	3 コンクリートの高機能化と快適性評価 1 建築設計と都市計画の理論の構築と実践	
	叙按	北川 啓介	- 建築設計と郁巾計画の理論の構築と美践 2 映像空間における建築空間と都市空間の研究	
			3 修士設計	
	教授	楠原 文雄	3 19 13 13 14 15 15 15 15 15 15 15	
	1717		2 鉄筋コンクリート造骨組の地震時応答	
			3 プレストレストコンクリート部材の保有耐力と変形性能	
	教授	佐藤 篤司	1 鋼構造部材・接合部の保有耐力と塑性変形能力の定量的評価	建築・デザイン
	17.17	12/12/ /// // //	2 乾式接合による構造システムの開発	
			3 軽量形鋼を活用した構造システムの開発と設計法の構築	
	准教授	伊藤 孝紀	1 身体性を活かした家具・インテリアデザイン研究	
			2 商環境デザインによる建築プロデュース研究	
			3 まちづくりに関する環境演出の研究	
	准教授	伊藤 洋介	1 多機能建築材料の開発	
			2 建築分野における知的財産活動の研究	
			3 電波吸収建材の開発と活用方法の研究	
	准教授	梅村 恒	1 建物の地震応答解析	
			2 鉄筋コンクリート造部材の非線形挙動	
110-45	\# \ #\\₩	1. t/\ \ \ \ \ \ \ \	3 建物設計用入力地震動	
社会工学系	准教授	小松 義典	1 照明デザインにおける光の重心の定量化	
			2 コンビニトイレの施設計画 3 夜間街路における不安感の研究	
	准教授	須藤 美音	3 傾間国路における不安窓の研究 1 知識創造空間に関する研究	
	在扒区	次隊 天日	2 施設管理の最適化手法に関する研究	
			3 公共施設の再配置に関する研究	
	准教授	夏目 欣昇	1 建築資料およびその利活用に関する研究	
			2 景観デザインおよび空間認知に関する研究	
			3 社会教育施設および学習空間に関する研究	
	准教授	濱田 晋一	1 伝統的建造物の保存修復	
			2 日本城郭史に関する研究	
1			3 古典建築書による伝統建築設計システムに関する研究	1
	教授	上原 直人	1 技術者の職業能力開発に関する研究	1
			2 リカレント教育と人材育成に関する研究	1
1			3 科学技術と市民参加に関する研究	1
	教授	□ 萱場 祐一	1 圃場整備と洪水流量の経年変化との関係に関する研究	1
	1717	旦物 141	- 画物を確と深水流量の程平変化との関係に関する研究 - 2 河道断面形状が河道安定性、河川環境に及ぼす影響の評価に関する研究	
	#7-1-1-1-1-1	기가 되고 그리	3 庄内川流域を対象とした流域治水に関する研究	
	教授	北野 利一	1 不規則波浪のスペクトル解析	
			2 極値波浪解析	
	教授	公士 리크	3 高潮による異常水位の頻度解析 1 平面交差部の性能評価手法に関する研究	
	扒饭	鈴木 弘司	1 平面父差部の性能評価手法に関する研究 2 都市内街路空間整備に関するシミュレーション分析	1
			3 交通弱者支援のための情報通信システムの開発	 環境都市
	教授	秀島 栄三	3 文通羽有文法のための情報通信システムの開発 1 計画策定、利害調整のための制度・技術	塚児即川
	-1×1×	/ / / / / / / / / / / / / / / / / / /	2 経済性と環境負荷を考慮した都市施設マネジメント	1
			3 公共サービスを支える都市基盤	1
	教授	藤田 素弘	1 都市交通計画と将来交通・災害時交通の分析・予測	1
	2010		2 NUERO・GIS等を利用した人間知覚に基づく交通情報提供システム開発	1
			3 生活環境改善施策とその調査・データ解析手法・評価	1
	教授	藤本 温	1 公共哲学と技術倫理	1
		_	2 技術倫理における事例分析の方法論	1
1			3 技術論から見た技術倫理の研究	1
	教授	前田 健一	1 土ー水ー空気の三相相互作用を考慮した液状化ー津波の複合災害対策と豪雨など風水害対策	1
			2 粒状体のマイクロメカニクスによる落石、土石流などの土砂災害メカニズム解明と対策	1
			3 地盤工学から視た環境,エネルギー問題への取り組み	

大学院工学研 プログラム	究科(博: │ 職名	上前期課程)担当 ┃ 氏名	当教員一覧 現在の主要研究テーマ	研究分野
7-77-	教授	増田 理子	1 外来生物が環境に及ぼす影響	1017071 E1
			2 絶滅危惧生物保全のための基礎研究	
			3 生物多様性の維持機構の解析	
	准教授	岩本 政巳	1 橋梁の耐風設計に関する研究	
			2 構造物の地震時挙動と耐震設計に関する研究	
			3 構造物の振動モニタリングに関する研究	
	准教授	上原 匠	1 瓦チップの有効利用	
			2 細粒径瓦チップを用いた多機能モルタルの開発	
			3 リサイクル石膏(石膏ボード粉)の有効利用	
	准教授	京川 裕之	1 地盤材料特性のマルチスケールモデリング	
			2 地盤挙動のマルチフィジックスシミュレーションの開発	
			3 変質や風化など地盤の長期ダイナミクスに関する研究	
	准教授	庄 建治朗	1 歴史時代における水文・気候環境と水災害履歴の復元	
			2 亜熱帯地域における年輪気候学に関する研究	
			3 東海地域における豪雨特性と都市域の流出特性に関する調査研究	
	准教授	永田 和寿	1 構造物の地震時応答性状と耐震・免震設計に関する研究	
			2 鋼構造物の健全度評価と維持管理に関する研究	
			3 腐食環境の評価と防食技術の開発に関する研究	
	准教授	吉田 奈央子	1 微生物を用いた地下水・土壌の生物学的環境修復	
			2 嫌気性微生物を用いた創エネルギー型廃水処理	
			3 微生物バイオフィルムを用いた水環境の物資循環制御	
	准教授	吉田 亮	1 実構造物調査によるコンクリートの劣化メカニズム	
			2 微視構造に基づいたセメント硬化体の劣化メカニズム	
			3 材料特性を生かした高耐久性・低環境負荷のデザイン	
	教授	荒川 雅裕	1 製品設計と作業・工程設計の同時最適化法の研究	
			2 生産システムにおける計画・スケジューリング技法の研究	
			3 製造業におけるサービス・製品の創造とビジネスモデルの構築に関する研究	
	教授	井村 直恵	1 「美味しさ」を創り出す能力の研究	
			2 地域資源の開発経営	
社会工学系			3 和食の国際化における概念の再文脈化	
	教授	鷲見 克典	1 職務態度あるいは学習態度(動機づけ, エンゲージメント, 満足感など)に関する研究	
			2 心理的健康(ウェルビーイング・幸福感、ストレスやメンタルヘルス)に関する研究	
	10.1-		3 日常のコミュニケーション(社会的関係、社会的問題解決を含む)に関する研究	
	教授	中出 康一	1 生産システムの確率解析	
			2 待ち行列システムの最適制御に関する研究	
	±11 1==	11 66 10	3 生産、社会システムにおけるスケジューリング	
	教授	林 篤裕	1 解答過程の評価を利用した学習達成度を把握する手法に関する研究	
			2 科目横断型試験の測定と多面的評価に関する研究	
	*1-1-10	±#.1. > ±	3 非線形多変量解析を用いたデータ分析に関する研究	
	教授	横山 淳一	1 包括ケアシステムの構築と評価	
			2 健康づくりを支援するための情報システム開発 3 保健・医療・福祉の連携と情報化の評価・改善	
	数+¤	海扣耳	3 保健・医療・福祉の連携と情報化の評価・改善 1 リスクマネジメント	経営システム
	教授	渡辺 研司	1 リスクマインメント 2 事業継続マネジメント(BCM)	
			2 事業経続マネンメント(BUM) 3 重要(情報)インフラ防護(CIP/CIIP)	
	准教授	川村 大伸	3 重要(1月報)インフラ防護(CIP/CIIP) 1 統計的品質管理によるものづくり支援技術の確立	
	/庄/汉]又	川川八甲	1 秋計的品質管理によるものうくり支援技術の確立 2 価値共創を起点とした製品およびサービスの開発・測定・評価	
			2	
	准教授	神田 幸治	3 杭計子や破機子首によるナーダに基づくマネジメントに関する研究 1 日常場面における人間の注意特性	
	作为汉	17世 羊加	1 日常場面における人間の注意特性 2 人的錯誤(ヒューマンエラー)のメカニズム	
			3 交通参加者の行動の諸特性の解明	
	准教授	小島 貢利	3 文通参加者の行動の語符号の推明 1 ジャストインタイム生産方式の性能評価と最適化	
	,E-TA-JX		2 生産情報システムに関する研究	
			3 投資の経済性分析	
	准教授	Sun Jing	1 サプライチェーンと生産システムにおける最適切替と配置問題	
	· E 1/\1X	Sun onig	2 データ分析を用いたSCMとマーケティング戦略の最適化問題	
			3 再生エネを考慮した電力市場における最適化問題	
	准教授	浜口 孝司	1 プラントオペレータ支援システム	
		WE 7-1	2 制御システムセキュリティ	
			3 安全システムの構築・変更管理	
L		1	N=1 0 10 10 00 00 00 00 00 00 00 00 00 00	1

大学院工学研!大学院工学研究科(博士前期課程)担当教員一覧

所属	職名	氏名	現在の主要研究テーマ	研究分野				
工学専攻	教授	石塚 佳奈子	1 自閉症・注意欠如多動症の併存症に関する研究 2 精神疾患の成り立ちに関する研究 3 特別支援教育の合理的な支援に関する研究	精神神経科学				